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ABSTRACT

This report covers the state of the art of metal-removal opera-
tions for titanium and its alloys. It describes the methods currently
employed for conventional machining, grinding, electrolytic, and
chemical machining processes. The precautions which should be
taken to avoid troubles resulting from the characteristics typical of
titanium are pointed out. Ten machining, two grinding, two cutting,
and two unconventional metal-removal operations are discussed
separately. In other sections, the mechanics of chip-forming pro-
cesses, the response to machining variables, costs, and precautions
desirable from the standpoint of safety are discussed.
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PREFACE

This report on practices used for removing metal from titanium

and its alloys is intended to provide information useful to designers

and fabricators. The detailed recommendations are considered to
be reliable guides for selecting conditions, tools, and equipment

suitable for specific operations. The causes of common problems

are identified and precautions for avoiding them are mentioned.

The report summarizes information collected from equipment
manufacturers, technical publications, and reports on Government
contracts, and by interviews with engineers employed by major
aircraft companies. A total of 86 references, most of them cover-
ing the period since 1958, are cited. Detailed data available prior
to that time, mostly on unalloyed titanium, were covered by TML
Report No. 80 issued by the organization now known as the Defense
Metals Information Center. A large part of the more recent infor-
mation on alloyed titanium was collected on a program for the
Federal Aviation Agency. It appears in an abridged form in DMIC
Memorandum 199.
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TECHNICAL MEMORANDUM X-53312

MACHINING AND GRINDING OF TITANIUM AND ITS ALLOYS

SUMMARY

Problems in machining titanium originate from three basic
sources: high cutting, temperat,'res, chemical reactions with tools,
and a relativcly low modulus of elasticity. Unlike steel, titanium
does not form a built-up edge on tools, and this behavior accounts
for the characteristically good surface finishes obtained even at low
cutting speeds. Unfortunately, the lack of a built-up edge also in-
creases the abrading and alloying action of the thin chip which liter-
ally races over a small tool-chip contact area under high pressures.
This combination of characteristics and the relatively poor thermal
conductivity of titanium results in unusually high tool-tip
temperatures.

Titanium's strong chemical reactivity with tool materials at
high cutting temperatures and pressures promotes galling and tool
wear.

Mechanical problems result from titanium's relatively low
modulus of elasticity, half that of steel. The low modulus coupled
with high thrust forces required at the cutting edge can cause deflec-
tions in slender parts. Distortion of that kind creates additional
heat, because of friction between the tool and workpiece, and prob-
lems in meeting dimensional tolerances. Because of differences in
thermal and mechanical properties, titanium parts may "close in" on
steel drills, reamers, and taps.

These difficulties can be minimized by following recommenda-
tions given in the report. When proper techniques are employed,
machining of titanium is not an unusually difficult or hazardous op-
eration. Although fires and explosions may possibly occur when
finely divided titanium is improperly handled, simple precautions
insure safety.
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INTRODUCTION

Fifteen years ago titanium alloys were considered to be very
difficult to machine compared with common constructional materials
(Ref. 1). However, subsequent research and experience in machine
shops has progressively improved the situation. Generally speak-
ing, there have been no radical innovations; the steady improvement
has resulted from gradual refinements in tool materials, tool gecme-
tries, and cutting fluids. Current experience indicatLs that more
consistent machining results can be obtained with titanium than with
some grades of steel (Ref. 2). For instance, surface roughness
values as low as 20 to 30 microinch rms can be obtained on titanium
without much trouble (Refs. 3-5).

MACHINING BEHAVIOR

Machinists commonly assert that titanium machines like austen-
itic stainless steel. However, comparing titanium directly with
stainless steel seems justifiable only to the extent that both materials
produce a tough, stringy chip (Ref. I). The situation is different
from the viewpoint of feed (Ref. 6) and cut dcptl•. Austenitic stain-
less steel usually requires heavier feeds in order to penetrate the
uncut metal below a heavily strain-hardened skin. Conversely,
titanium, a material which does not strain harden as severely, does
not necessarily require heavy feeds. In fact, too! wear per unit
volume of metal removed increases with feed (Ref. 6).

The relative ease of metal removal for equal tool lives can be
expressed in terms of the machinability ratings of metals. In this
light, the machinability of unalloyed titanium does resemble that of
annealed austenitic stainless steel, while the titanium alloys would
be more comparable to 1/4-hard and 1/2-hard stainless steels.
Table I shows the approximate machinability ratings of titanium
alloys, stainless steel, and other alloys of interest to the aerospace
industry (Refs. 7,8).

Principles of Titanium Machining.

Chip Formation. Three physical processes occur
sequentially when a metal is machined. Initially, the metal at the
tool point is compressed; then the chip is formed by displacement or

2

-



TABLE I. MACHINABILITY RA I I.N(IS OF HITANIUM AND ITS ALLOYS RELATIVE
TO OTI IER SELECTED MATERIALS(a)

Alloy Tý pe Condition(b) Rating(c)

2017 Alumintiri alloy T4 30
B1112 Resulfurized steel HR 100
1020 Carbon steel CD 70

4340 Alloy steel A 45
Titanium Commercially pure A 40
302 Stainless steel A 35
Ti-SAI-2.5Sn Titanium alloy A 30
Ti-8Mn Titanium alloy A 25
Ti-6AI-4V Titanium alloy A 22
Ti-SAI-1Mo-lV Titanium alloy A 22
Ti-GAI-6V-2Sn Titanium alloy A 20
Ti-6AI-.!V Titanium, alloy HT 18
Ti-1AI-6V-2Sn Titanium alloy HT 16
Ti-13V-l1Cr-3AI Titanium alloy A 16
Ti-13V-IlCr-3A1 Titanium alloy HT -12
11S25 Cobalt base A 10
RI ne. 41 Nickel base HT 6

(a) R, fs. 7,8.
(b) T4: Solution-ICat-treated and artificially aged condition

111R: ilot-rolled condition
A: Annealed condition
lIT: Solution-treated-and-aged condition
CD: Cold-drawn condition.

(c) Based on AISI B1112 steel as 100.

41
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deformation of metal along a very narrow shear plane extending from
the tool edge to the unmachined work surface; finally the chip flows
over the face of the tool under heavy pressure and high frictional re-
sistance (Refs. 9, 10). As the tool ploughs through the workpiece,
the shear plane moves to maintain a "'constant" shear angle (0 in Fig-
ure 1) throughout the entire cut (Ref. 11). The shear angle can
fluctuate with cutting conditions. For example, if chip friction
against the tool face increases, the shear angle will decrease, and
vice versa (Ref. Z).

The characteristically large shear angle producing a thin chip,
and the small tool-chip contact area constitute two of the three unique
cutting characteristics for titanium (Refs. 4,,13). Schematic draw-
ings of chips being formed for the same size cuL and tool angles in
titanium and steel are compared in Figure 1.

Tool Tool

Some cut r

The small shear angle shown for steel produces a long shear

plane and a thick chip. Conversely the larger shear angle for tEta-
nium produces a shorter shear plane (Ref. 9). The long thin chip
suffers less deformation (Ref. 12) and flows across the tool face at
a higher velocity for any particular surface speed (Ref. 4).
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The smaller contact area shown for titanium results in higher
unit pressures for the same cutting force. These higher pressures
coupled with the characteristically high-velocity chip generate more
heat on the tool-chip contact area (Refs. 4, 14). Other factors of
chip formation characteristic of titanium have been identified by
different investigators (Refs. 15-17).

Effects of Properties.

Thermal Properties. Almost all of the useful energy
expended in machining is converted into heat. The amount of heat
liberated depends on the tool forces, which are high during machin-
ing operations in difficult materials. The temperatures at the tool
point depend partly on the rate at which heat is generated at the tool
point and partly on the rate at which it is removed by the chip, the
cutting fluid, and by conduction through the tool.

The heat-transfer characteristics of a material depend on ther-
mal diffusivity,'which is a function of density, specific heat, and
thermal conductivity. Since titanium exhibits poor thermal diffusiv-
ity, as indicated in Table II, tool-chip interface temperatures are
higher than they would be when machining other metals at equal tool
stresses. The higher temperatures in the cutting zone lead to rapid
tool failure unless efficient cooling is provided by suitable cutting
fluids.

TABLE I1. PHYSICAL PROPERTIES AND RELATIVE HEAT-TRANSFER PROPERTIES OF
COMMERCIALLY PURE TITANIUM, 75ST ALUMINUM ALLOY. AND AISI 1020 STEEL

Commercially 7SST Age-Hardened AISI 1020
Property Pure Titanium Aluminum Steel

Density. p. lb/in. 3  0.163 0.101 0.290

Thermal Conductivity. k. 105 845 390
Btu/(ft 2 XhrXFXin. )

Specific Heat, 0.13 0.21 0. 117
Cp, Btu/(lbXF)

Volume Specific Heat, 0.021 0.021 0.031
p Co Btu/(in. 3 XF)

Thermal Diffusivity 4950 39.800 11,500

Chemical Reactivity. Titanium reacts with nearly all
metals and refractory materials, and this, of course, includes

5l



cutting tools (Ref. 14). Because of the high temperatures and pres-
sures developed during machining, an alloy is formed continuously
between the titanium chip and the tool mn'aterial. This alloy passes
off with the chip producing tool wear (Ref. 14). Titanium reactivity
shows up in another way. If the tool dwells in the cut, even momen-
tarily as in drilling, the cutting temperature will drop, causing the
chip to freeze to the tool. When cutting is resumed, the chip is re-
leased, leaving a layer of titanium on the cutting edge. This layer
then picks up additional titanium to form an "artificial" built-up
edge. This undesirable situation can be prevented by not permitting
the tool to dwell in the cut, or by dressing the tool to remove the
titanium layer before cutting is resumed.

Modulus of Elasticity. The stiffness of a part, which is
affected by the modulus of elasticity of the workpiece material, is ani
important consideration when designing fixtures and selecting ma-
chining conditions. This is one of the more important factors in
machining of titanium since the thrust force, which deflects the part
being machined, is considerably greater for this metal than fcr
steel (Ref. 4). Since the modulus of elasticity for titanium is only
about half that of steel, a titanium part may deflect several times as
much as a similar steel part during machining (Ref. 4).

GENERAL MACHINING REQUIREMENTS

The difficulties inherent in machining titanium can be minimized
considerably b, )roviding the proper cutting environment. The basic
requirements include rugged machine tools in good condition;
vibration-free, rigid setups; high-quality cutting tools; and suitable
speeds, feeds, and cutting fluids (Refs. 2,3,13,18).

Machine Tools. Machine tools used for machining opera-
tions on titanium need certain minimum characteristics to insure
rigid, vibration-free operation (Refs. 4,13,19). They are:

"* Dynamic balance of rotating elements

"* True running spindles

"• Snug bearings

"• Rigid frames

"* Wide speed/feed ranges

6



"* Ample power to maintain speed

"* Easy accessibility for maintenance.

Milling machines and lathes also should possess backlash elim-
ination and snug table gibs.

Vibration Effects. Vibration-free operation can be obtained
by eliminating excessive play in power transmissions, slides, or
screws of machine tools (Refs. 13, 18,19). Undersized or under-
powered machines should be avoided. Certain aisle locations of
machines near or adjacent to heavy traffic also can induce undesir-
able vibration and chatter during machining. Last, but not least,
insufficient cutter rigidity and improper tool geometry can contribute
to vibration (Refs. 13, 18, 19).

Rigidity Considerations. Rigidity is achieved by using stiff
tool-tool holder systems, and adequate clamps or fixtures to mini-
mize deflection of the workpiece and tool during machining.

In milling operations, large-diameter arbors with double arm
supports; short, strong tools; rigid holding fixtures; frequent clamp-
ing; and adequate support of thin walls and delicate workpieces are
desirable (Ref. 18).

Rigidity in turning is achieved by machining close to the spindle,
gripping the work firmly in the collet, using a short tool overhang,
and providing steady or follow rests for slender parts (Ref. 18).

Drilling, tapping, and reaming require short tools, positive
clamping, and backup plates on through holes (Refs. 2,13,18,19).

Cutting-Tool Requirements. High-quality cutting tools are
needed for all machining operations. They should be properly ground
and finished. The face of the tool should be smooth, and the cutting
edges sharp and free of burrs (Ref. 18).

Milling cutters, drills, and taps should be mounted to run true.
Lathe tools usually should cut on dead center. In a multiple-tooth
cutter like a mill or a drill, all teeth should cut the same amount of
material (Ref. 2).

Tool Materials. Carbide, cast alloy, and high-speed
steel cutting tools are used. The choice depends on seven bzasic
factors including:

7,



"* The condition of the machine tool

"* The over-all rigidity situation

"• The type of cut to be made

"* The surface condition of the titanium

"• The amount of metal to be removed

• The metal removal rate

* The skill of the operator.

Carbide tools require heavy-duty, amjly powered, vibration-
free machine tools and rigid tool-work setups to prevent chipping.
If these two basic conditions cannot be met, then high-speed steel
tools give better results.

Carbide Tools. Carbide cutting tools are normally
used for high-production items, extensive metal-removal opera-
tions, and scale removal. The so-called nonferrous or cast iron
grades of carbides are used for titanium. These have been identi-
fied as CISC Grades C-I to C-4 inclusive by the Carbide Industry
Standardization Committee. A partial list of companies producing
these grades of carbide cutting tools is given in Table III.

Although competitive brands of cutting tools classified as belong-
ing to the same grade are similar, they are not necessarily identical.
Variations in life should be expected from tools produced by different
manufacturers and between lots made by the same producer. For
this reason, some aircraft companies specify their own lists of
interchangeable carbide tools made by approved manufacturers.

High-Speed Steel. High-speed steel tools can be
used at low production rates. Tool life is low by ordinary standards.

Both the tungsten and molybdenum types of high-speed steel have
been used. The hot hardness of tungsten high-speed steels results
from a reluctance of the dissolved tungsten carbide in tempered
martensite to precipitate and coalesce at elevated temperatures, a
phenomenon which causes softening of hardened steel. Molybdenum
carLides, as found in molybdenum high-speed steel, dissolve more
readily in austenite than do tungsten carbides, and at lower solution
temperatures. However, molybdenum carbides show somewhat
greater tendencies to precipitate at tempering temperatures. Most

8
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molybdenum high-speed steels utilize both tungsten and molybdenum
in suitable ratios to obtain the advahhtcges of both elements.

Cobalt is often added to both tungsten and molybdenum high-
speed steels to increase their red hardness above 1000 F. Ordinary
high-speed steels become too soft to :Lut effectively much in excess
of this temperature. Figure 2 shows this loss in hardness as tem-
perature rises. It also shows that the cobalt grades exhibit the best
hot-hardness values at temperatures above 850 F.

Certain precautiors must be observed when cobalt high-speed
steels are used. They are sensitive to checking and cracking from
abrupt temperature changes such as might occur during grinding.
Consequently, steps should be taken against any kind of sharp,
localized, overheating or sudden heating or cooling of these steels.
They are more brittle than cobalt-free high-speed steels, and hence
are not usually suitable for razor-edged quality tools. In addition,
precautions must be taken to protect cobalt high-speed steels from
excessive shock and vibration in service.

Table IV shows the wide choice of compositions of high-speed
steels available to the tool engineer. There is little difference in
properties between the molybdcnum and tungsten types of high-speed
steel. Although each group has its supporters, *extensive laboratory
and production comparisons of comparable grades of the two types
have not consistently established any outstanding superiority for
either group.

Cast Alloy. Cast cobalt-chromium-tungsten alloys
are used for metal cutting at speeds interinediate between carbide
and high-speed steel. The three main constituents of these alloys,
cobalt, chromium, and tungsten, are combined in various propor-
tions to produce different grades, as shown in Table V.

Cutting Speed. Gutting speed is the must critical variable
affecting metal-removal operations on titanium. Cuttng speed has a
pronounced effect on the tool-chip temperature as shown in Figure 3.
Since excessive speeds cause overheating and poor tool life, cutting
speeds should be limited to relatively low levels unless the cutting
site is properly cooled (Refs. 4,6, 13). Rotating cutters or work-
pieces should be at the desired speed when cutting starts.

10
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TABLE IV. TOOL-MATEIUIAL GUIDE FOR HIGH-SPEED STEELS(a)

AISI Comrosition, weight rer cent
Group Code(b) Tungsten Chromium V.anadium Cobalt Molybdenum

Tungsten T-1 18 4 1 ..
T-4 18 4 1 5
T-5 18.5 4 1.75 8 --

T-6 20 4 2 12 --

T-8 14 4 2 5
T-15 14 4 6 5 --

Molybdenum M-1 1.5 4 1 -- 8
M-2 6 4 2 -5 6
M-10 -- 4 2 -- 8
M-3 6 4 2.75 -- 5
M-3, Type 1 6.25 4 2.50 -- 5.70
M-3. Type 2 5.6 4 3.3 -- 5.50
M-4 5.50 4 4 -- 4.50
M-6 4 4 1.5 12 5
M-7 1.75 3.75 2 -- 8.75

M-30 2 4 1.25 5 8
M-33 1.75 3.75 1 8.25 9.25
M-15 6.5 4 5 5 3.5
M-34 2 4 2 8 8
M-35 6 4 2 5 5
M-36 6 4 2 8 5
M-41 6.25 4.25 2 5 3.75
M-42 1.5 3.75 1.15 8 9.5
M-43 1.75 3.75 2 8.25 8.75
M-44 5.25 4.25 2.25 12 6.25

(a) Data from Metals Handbook, Eighth Edition, American Society for Metals (1961), p 672.
For commercial listings, reference can be made to "A Guide to Tool Steels and Carbides",
Steel (April 21, 1958). Cleveland 13, Ohio; or to "Directory of Tool, Die Steels and

Sia~tered Carbides", Twenty-Seventh Edition (1959), The Iron Age, Philadelphia 39,
Pennsylvania.

(b) When greater than average red hardness is needed, cobalt-containing grades are recommended.
So-called parallel grades in the molybdenum and tungsten groups aze not necessarily compar-
able. For example, special-purpose steels such as T-6, T-8, T-15, and M-6. M-35, and
M-36 seem to have no close counterparts in the opposite group. The unique compositions and

properties of these steels often suit them to certain applications without competition.
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TABLE V. TOCL-MATERIAL GUIDE FOR CAST ALLOYS

Composition, per cent Hardness,
Co Cr W C Ni Fe Ta B Others RC

Stellite 1 9 (a) 50.6 31 10.5 1.9 -- 3.0 max .. .. 3.0 55

Stellite 3 (b) 46.5 30.5 12.5 2.45 3.0 max 3.0 max .. ..- 2.0 60

Tantung G(c) 46 28 16 2.0 -- 2.0 5 0.2 2.0 --

Sellite Star-J(d) 40.,5 32 17 2.5 2.5 max 3.0 max -- 2.5 61

Stellite 98M2(e) 37.5 30 18.5 2 3.5 2.5 max . . 6 63

(a) Possesses the highest resistance to shock loading or intermittent-cutting effect, but the lowest
red hardness of the stellites listed.

(b) Possetses higher hardness, but lower impact strength than Stellite 19. If Steflite 3 can handle
the shock conditions c& cutting, it is prefcrable to Stellite 19.

(c) A good compromise of hardness and shock resistance.
(d) Among the stellites, the hardness of Star-j is second only to 98M2. It should machine metal

faster than Stellltes 3 and 19 under moderate impact conditions. Stellite Star-i is suitable for
milling cast iron.

(e) Possesses the highest hardness of all stellites, but only fair impact strength.
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YIGURE 3. EFFECT OF CUTTING SPEED ON CUTTING
TEMPERATURE FOR CARBIDE AND
HIGH-SPEED STEEL

Feed. All machining operations on titanium require a posi-
tive, uniform feed. The cutting tool should never dwell or ride in
the cut without removing metal (Refs. 4,13). As an added precau-
tion, all cutters should be retracted when they are returned across
the work (Ref. 18).

Cutting Fluids (Ref. 8). Cutting fluids are used on titanium
to increase tool life, to improve surface finish, to minimize welding
of titanium to the tool, and to reduce residual stresses in the part.
Soluble oil-water emulsions, water-soluble waxes, and chemical
coolants are usually employed at the higher cutting speeds where
cooling is important. Low-viscosity sulfurized oils, chlorinated
oils, and sufochlorinated oils are used at lower cutting speeds to
reduce tool-chip friction and to minimize welding to the tool. These
cutting fluids have been identified as follows for use in some of the
subsequent machining tables:
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